Pura efervescència!

tronc

Us heu fixat que les pastilles efervescents només són efervescents en el moment en que toquen l'aigua? D'on surt el gas que crea les bombolles? És de suposar que de dins la pastilla, oi? Doncs, si d'allà dins en surt gas, el podríem capturar i utilitzar per inflar un globus?

Si més no, és curiós el funcionament d'aquest tipus de pastilles. En un primer moment són sòlides i compactes, però quan les llancem a l'aigua, s'acaben convertint en gas i en una fase dispersa que desapareix misteriosament dins l'aigua.

Anem a fer un experiment senzill per veure la quantitat de gas que pot arribar a sortir d'una pastilla efervescent.

Som-hi!

Materials
  • Una ampolla petita (de plàstic o de vidre)
  • Aigua
  • 1 pastilla efervescent 
  • 1 globus

Procediments:
  • Omplim l'ampolla amb aigua (3/4 parts més o menys).
  • Agafem la pastilla i en fem trossos petits. Llavors, introduïm aquests trossos petits dins el globus.
  • Col·loquem la boca del globus a la boca de l'ampolla fent que el globus quedi penjat al costat de l'ampolla.
  • Donem la volta al globus fent que tots els trossets de la pastilla caiguin dins l'aigua i n'observem el resultat.

Resultat i conclusions

Com heu pogut observat, quan els trossos de pastilla efervescent entren en contacte amb l'aigua, s'allibera un gas, augmenta la pressió dins l'ampolla i el globus s'infla en pocs segons com per art de màgia.

Mireu, les pastilles efervescents contenen bicarbonat de sodi (NaHCO3) i un àcid sòlid (per exemple àcid cítric). Quan entren en contacte amb l'aigua, es produeix una reacció química entre l'àcid i el bicarbonat. Els productes que s'obtenen d'aquesta reacció són: una sal, aiguadiòxid de carboni (CO2). Aquest últim forma bombolles que pugen a la superfície de l'aigua i s'allibera inflant el nostre globus.

Si afegíssim moltes pastilles efervescents a l'aigua, la pressió podria arribar a ser tant gran que fins i tot podríem arribar a fer explotar el globus. Aneu en compte!  :-)


Alb.

El misteri del "super-glue"

tronc

Com s'ho fan les coles per enganxar? Com és que si enganxen tant, no s'enganxin a les parets del recipient que les contenen? Avui intentarem desvetllar aquest misteri.

Mireu, si en comptes de parlar de coles parlem d'aigua, ens adonarem que tampoc són tan diferents. Si no fos així, com s'explicaria que a les gotes de rosada els costi tant relliscar per la superfície de les fulles? O, per què costa tant espolsar les gotes d'una teranyina molla? Quina característica comparteixen l'aigua i les coles que les facin "enganxifoses" en determinades superfícies?

El que està clar és que, dins l'aigua (igual com passa amb les coles), hi ha algun tipus de força que fa que s'uneixi a superfícies i aquesta força és prou elevada com per a observar-la en diverses situacions del dia a dia.

Anem a fer un senzill experiment per visualitzar aquesta força màgica. Sí, sí, ... la visualitzarem!

Som-hi!

Materials
  • Un got
  • Aigua suficient com per omplir el got
  • 1 carta d'una baralla de cartes.
  • Unes quantes monedes de 1 i 2 cèntims d'euro (amb 10 n'hi haurà de sobres)

Procediments:
  • Sobre la vora superior del got (buit, sense aigua), fem aguantar la carta en equilibri de manera que quedi la meitat de la carta a dins la boca del got i l'altre meitat a fora.
  • Col·loquem una moneda sobre la part de la carta que vola fora del got i observem que, com és d'esperar, la carta es desequilibra i ens cau moneda i carta.
  • Ara omplim el got amb aigua fins dalt de tot.
  • Col·loquem de nou la carta sobre la vora superior del got (igual com hem fet en el primer pas de l'experiment). Així doncs, ara mitja carta reposarà sobre l'aigua del got i l'altre mitja volarà fora del got.
  • Sobre la part de la carta que vola fora del got hi anem posant monedes de 1 o 2 cèntims. Veurem que la carta no es desenganxa de l'aigua. Fins i tot, si afineu la vista, podreu veure l'adhesió i elasticitat que presenta l'aigua a la superfície de contacte amb la carta. Estem observant l'adhesió.

Resultat i conclusions

Com ja sabeu, l'aigua és una molècula formada de dos àtoms d'Hidrogen i un àtom d'Oxigen. Les molècules d'aigua estableixen unions febles unes amb les altres, els coneguts ponts d'Hidrogen. Aquestes unions de cohesió entre molècules d'aigua són, precisament, les responsables de l'estat líquid de l'aigua entre els 0 i els 100ºC. Si es trenquen aquestes unions, per exemple quan pugem la temperatura per sobre els 100ºC, l'aigua passa automàticament a estat gasós.

A part de les unions de cohesió (unions entre partícules adjacents de la mateixa substància), l'aigua també pot establir unions d'adhesió. I l'adhesió no és res més que la interacció entre les superfícies de diferents cossos, fent que aquestes quedin unides per forces intermoleculars. Aquestes forces intermoleculars es donen gràcies a la polaritat de les molècules (quan més polars siguin les molècules, més força d'adhesió).

El que succeeix en el nostre experiment a la superfície de contacte entre la carta i l'aigua és una mostra d'aquesta força d'adhesió. Com que l'aigua és una molècula lleugerament polar, queda unida a la carta per unions febres que n'impedeixen la separació. A més, degut a aquesta unió entre aigua-carta també podrem observar l'elasticitat de l'aigua a mesura que anem afegint monedes sobre la carta. Aquesta elasticitat però, no és deguda a l'adhesió sinó a la tensió superficial.

Per clarificar una mica les idees, us poso l'exemple d'una gota d'aigua sobre una fulla. En aquest cas, la cohesió és la responsable que l'aigua formi gotes, la tensió superficial de que la gota es mantingui esfèrica i l'adhesió de que aquesta no llisqui fàcilment sobre la superfície de la fulla.

I ara que ja tenim après el fonament científic, enteneu perquè enganxen les coles? I per què no ho fan al recipient que les conté?


Alb.

L'ADN del kiwi ... sigui ocell, sigui fruita

tronc

Si us trobeu a un neozelandès i li dieu que us mengeu un kiwi cada matí, es posarà les mans al cap només de pensar en l'extinció d'aquest magnífic ocell altament protegit i en perill d'extinció. Ocell?? ... Doncs sí, ... en realitat la fruita del kiwi, el nom original - i correcte - de la qual és Actinídia (Actinidia deliciosa), se li ha assignat el nom d'un ocell sense ales endèmic de Nova Zelanda. Curiosament, el nom de kiwi té un origen onomatopeic provinent del cant d'aquest ocell. Així doncs, si la fruita no canta, com és que se li posés el nom de l'ocell?

La història del nom de la fruita es remunta a l'any 1959, quan una companyia exportadora de fruita neozelandesa va etiquetar les actinídies amb el nom comercial de Kiwifruit. Anys més tard, la companyia va rectificar i va canviar el nom de l'etiqueta per Zespri, bàsicament per evitar confusions de quin tipus de producte venien, si un ocell o una fruita. Però, com ha passat en altres casos al llarg de la història, la rectificació va arribar massa tard i el nom de Kiwifruit s'havia estès per tot el món com si d'una taca d'oli es tractés. Avui dia, a la majoria de països del món, els kiwis no són ocells sinó saludables fruites que es venen als supermercats, moltes vegades com a autèntics objectes de desig per a qualsevol persona que vulgui anar fi (gastrointestinalment parlant).

Sabíeu que els kiwis (i ara parlo de la fruita...) són molt, molt i molt saludables? Contenen una gran quantitat de vitamina C (el doble que una taronja), vitamina B, i són rics en potassi, magnesi i fibra. Però, a més a més de ser rics en vitamines i altres substàncies nutritives, també són rics en ADN, i és per això que avui utilitzarem els kiwis (la fruita) per fer-ne un extracció i veure aquestes magnífiques macromolècules.

Som-hi!

Materials
  • Un kiwi (la fruita, no l'ocell)
  • Solució d'extracció, que es prepara amb una part de xampú, nou parts d'aigua i una culleradeta de sal
  • 1 bossa de plàstic transparent
  • 1 embut (millor si és de vidre)
  • Paper de filtre (pot ser paper de cuina)
  • Una copa alta de vidre
  • Alcohol de 96º molt fred (posat a la nevera)
  • 1 pal de fusta (el típic de fer brotxetes)

Procediments:
  • Pelem el kiwi i el tallem a quarts (4 trossos)
  • En posem dos o tres trossos dins la bossa de plàstic i els aixafem bé amb les mans.
  • Posem uns 10ml de la solució d'extracció (l'haurem preparada abans) dins la bossa i ho seguim aixafant bé durant uns 5 minuts més.
  • Agafem el paper de filtre i el posem a dins l'embut. L'embut el posem sobre la copa. Llavors fem passar el contingut de la bossa per l'embut-filtre fent que el líquid es vagi filtrant mica a mica i caient dins la copa de vidre.
  • Quan veiem que ja no baixa més líquid, afegim 10ml d'alcohol molt fred a la copa de vidre fent-lo lliscar suaument per les parets internes de la copa.
  • Esperem 15 minuts.
  • Submergim el pal de fusta dins la copa de vidre i extraiem lentament la substància blanquinosa i d'aspecte gelatinós que ens ha quedat al fons. És l'ADN!

Resultat i conclusions

A l'experiment Pinya colada d'ADN que ja us vaig presentar vàrem veure una altra manera d'extreure ADN de les cèl·lules. El fonament científic però, és el mateix als dos experiments.

A la pràctica que acabeu de fer, el sabó i les sals de la solució d'extracció ajuden a trencar les membranes alliberant l'ADN de dins les cèl·lules. Amb això, el fem accessible.

Llavors, l'alcohol que hi hem afegit, deshidrata les molècules d'ADN fent que s'aglutinin, precipitin al fons i es facin visibles. El fred, en aquest cas, fa que les reaccions químiques (reaccions catabòliques) es produeixin més lentament evitant, d'aquesta manera, la destrucció de l'ADN.


Alb.

Suren els metalls?

tronc

Segur que en alguna ocasió heu vist com els sabaters (de nom científic Gerris najacaminen tranquil·lament sobre la superfície de l'aigua. Si algun dia els intenteu imitar (mai se sap... ) veureu que, per més que ho intenteu, no hi ha maneres d'aguantar-se sobre l'aigua i, ni molt menys, caminar-hi tranquil·lament per la seva superfície. Com és això? Per què ells sí i nosaltres no? Què passaria si intentéssim fer surar un tros de metall?

Us proposo un petit experiment per observar on rau la màgia de la sustentació dels sabaters sobre l'aigua.

Som-hi!

Materials
  • Un got
  • Aigua (suficient per omplir el got)
  • Dos clips metàl·lics

Procediments:
  • Omplim el got amb aigua fins dalt però sense arribar a vessar.
  • Abans de seguir amb l'experiment, proveu de fer surar un dels clips sobre la superfície de l'aigua. Poc a poc i amb bona lletra... deixant-lo amb moooolta cura sobre la superfície i amb mooolta paciència.
  • És impossible? ... Doncs, encara que ho sembli, no que no ho és. Seguim amb l'experiment!
  • Dobleguem un dels dos clips per la meitat formant un angle recte.
  • Ara, utilitzant el clip doblegat com si es tractés d'una cullera, li posem l'altre clip a sobre (procurarem que estigui ben sec) i el posem poc a poc dins l'aigua. Si ho fem amb delicadesa, veureu com el clip transportat es queda sobre la superfície de l'aigua com per art de màgia. Ho hem aconseguit!

Resultat i conclusions

Com heu pogut veure, el clip que en un primer moment no hi havia manera de fer-lo surar sobre l'aigua, llavors ho ha fet, però tan sols ho hem aconseguit dipositant-lo amb molta delicadesa. La responsable d'això és ni més ni menys que la tensió superficial que es generen a la superfície de l'aigua. I què és la tensió superficial? Doncs la manifestació que existeixen forces febles d'unió entre les molècules del líquid. Aquestes unions febles fan que a la superfície del líquid es generi una peculiar membrana de tensió molt fràgil i sensible, que és, precisament, la que aprofiten els sabaters per caminar-hi per sobre.

La tensió superficial sempre depèn de tres factors: la naturalesa del líquid, el mitjà que l'envolta i de la temperatura. En general la tensió superficial disminueix al augmentar la temperatura, ja que les forces de cohesió disminueixen en augmentar l'agitació tèrmica. Dit d'una altra manera, quan un líquid està calent, les seves partícules es mouen més i, per tant, s'afebleixen les unions intermoleculars disminuint d'aquesta manera la tensió superficial. Així doncs, repetir aquest experiment utilitzant aigua calenta en comptes d'aigua freda ens disminuiria notablement la probabilitat d'èxit.


Alb.